Model Evaluations of April 2008 North Central Coast MPA Proposals

MLPA Master Plan Science Advisory Team Modeling Sub-team

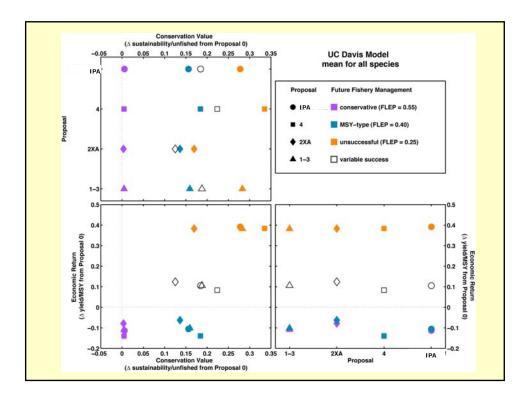
MLPA I-team staff, Bjorkstedt, Botsford, Costello, Gaines, Hilborn, Walters, White

Presented to the SAT - May 30, 2008

Dr. Christopher Costello*

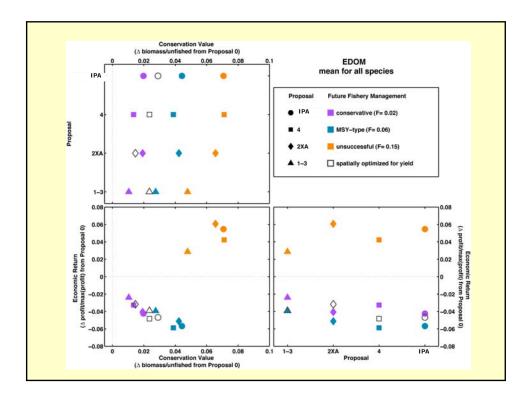
*Bren School, UC Santa Barbara Costello@bren.ucsb.edu

Basic model features


- Spatially-explicit habitat data, MPA locations, larval dispersal, adult home range, dynamics to equilibrium
- Predict equilibrium spatial larval supply, biomass, harvest
- <u>Critical question</u>: Future management in open areas?
- Scenarios considered:
 - 1. Conservative (both models)
 - 2. Maximum Sustainable Yield (MSY) -type (both models)
 - 3. Unsuccessful (both models)
 - 4. Current management as predictor of future (UCD only)
 - 5. Spatially optimized for economic returns (EDOM only)

Changes from last time...

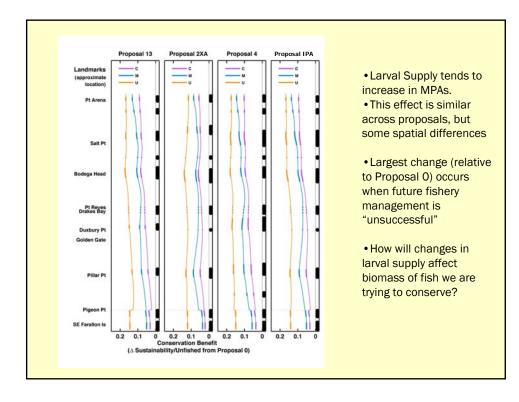
- Presented results at BRTF meeting in April
- Key changes/additions
 - Scaled results so could easily discern differences among proposals - all are relative to Proposal 0
 - Added spatial results from both models over a range of fishery management scenarios
- Added Integrated Preferred Alternative to the comparison

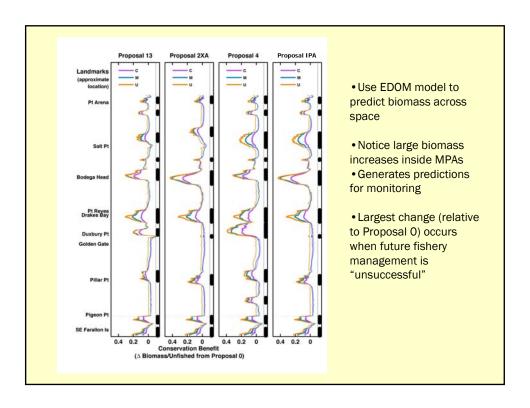

Proposal evaluations

- Four evaluations for each proposal
 - 1. Study-area-wide effects on <u>biomass</u> for range of species
 - Change from Proposal O, as % of unfished biomass
 - 2. Study-area-wide effects on yield
 - Change from Proposal 0, as % of optimal yield
 - 3. <u>Tradeoff</u> between yield and biomass
 - 4. <u>Spatial</u> effects on fish populations generate monitoring predictions?

Summary of UC Davis model

- Ranking for conservation value (1 is best):
 - (1) Prop 4, (2-3) IPA/Prop 1-3, (4) Prop 2-XA
 - Differences tend to diminish as management outside becomes more conservative
 - If management very conservative, all proposals equal.
- · Ranking for yield
 - (1) Prop 2-XA, (2-3) IPA/Prop 1-3, (4) Prop 4
 - If management very unsuccessful, all proposals equal
- Yield/Biomass tradeoff:
 - Integrated Preferred Alternative not obviously off of the "frontier"




Summary of EDOM Model

- Ranking for conservation value depends on future fishery management scenario:
 - Conservative/MSY: (1) IPA, (2) Prop 2-XA, (3) Prop 4, (4) Prop 1-3
 - Optimize Profit: (1) IPA, (2) Prop 4, (3) Prop 1-3, (4) Prop 2-XA
 - Unsuccessful: (1) Prop 4, (2) IPA, (3) Prop 2-XA, (4) Prop 1-3
- Ranking for yield depends on future fishery management scenario:
 - Conservative: (1) Prop 1-3, (2) Prop 4, (3) Prop 2-XA, (4) IPA
 - MSY-type: (1) Prop 1-3, (2) Prop 2-XA, (3) IPA, (4) Prop 4
 - Optimize Profit: (1) Prop 2-XA, (2) Prop 1-3, (3) IPA, (4) Prop 4
 - Unsuccessful: (1) Prop 2-XA, (2) IPA, (3) Prop 4, (4) Prop 1-3
- Yield/Biomass tradeoff
 - Integrated Preferred Alternative tends to push "frontier" outwards

Spatial results

- What are spatial implications for conservation?
- MPA size and placement interacts with habitat, dispersal, home ranges to create complex spatial consequences.
- Use spatially-explicit models to predict:
 - Larval supply across space (UCD Model)
 - Biomass of modeled fish species across space (EDOM Model)

